Efficient multilevel and multi-index methods in Uncertainty Quantification

Pieterjan Robbe
joint work with D. Nuyens and S. Vandewalle

WSC Spring Meeting

KU Leuven - University of Leuven
Celestijnenlaan 200A
B3001 Leuven
Belgium
® pieterjan.robbe@kuleuven.be

Contents

1. Uncertainty Quantification in engineering

A short introduction
2. Motivational example

Heat exchanger with random material
3. Multi-Index Monte Carlo

Exploiting coarser grids for variance reduction
4. Adaptive strategies

Building optimal index sets
5. Results

Stacking bricks
6. Conclusions and outlook

Some closing thoughts

Computational models

- Computational model as black box

- If input parameters or model are subject to uncertainty \Rightarrow uncertainty quantification or UQ

Specific industrial challenges

What makes industrial UQ problems hard?

- Computational models are complex: nonlinearity, coupled problems (thermo-mechanics), plasticity, contact zones, ...
- Simulations are costly: a single run can take up to several hours or days, or more
- Number of inputs is typically 10-1000: high-dimensional problems (possibly even infinite-dimensional)
- UQ code comes on top of well defined simulation procedures

Engineers focus on a so-called quantity of interest $g=\mathcal{F}[\mathcal{M}(\xi)]$, such as maximum displacement, average stress, ...

Typical engineering questions

Typical outcomes of the uncertainty propagation phase are:

- Statistics of the quantity of interest

- Distribution of the quantity of interest
- Failure probability of the quantity of interest

Motivational example

- Idealized model for a two-dimensional heat exchanger
- Conductor material $k^{\text {int }}$ modelled with "smooth" variation
- Insulator material k int modelled with "rough" variation
- Quantity of interest g is maximum temperature

Motivational example

- Some example visualisations of the material

- Example mesh and mean temperature field

Modeling spatial variation

- Represent the conductivity as a lognormal random field

$$
k(\boldsymbol{x}, \omega)=\exp (Z(\boldsymbol{x}, \omega))
$$

with $Z(x, \omega)$ a Gaussian random field

- Every sample $\omega \in \Omega$ yields a realisation of the random field
- Classical technique to generate realisations of $k(\boldsymbol{x}, \omega)$ is the KL-expansion

$$
k(\boldsymbol{x}, \omega)=\exp \left(\mu(\boldsymbol{x})+\sum_{r=1}^{\infty} \sqrt{\theta_{r}} f_{r}(\boldsymbol{x}) \xi_{r}(\omega)\right)
$$

$r=1$
$r=2$
$r=4$
$r=15$
$r=88$

The KL expansion

- Approximation quality of the KL expansion determined by eigenvalue decay rate

The KL expansion

- Eigenvalues and eigenfunctions are solutions of the Fredholm equation

$$
\int_{D} C(\boldsymbol{x}, \boldsymbol{y}) f_{r}(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}=\theta_{r} f_{r}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in D
$$ where $C(\boldsymbol{x}, \boldsymbol{y})$ is the covariance function of the random field

- Faster decay of the eigenvalues θ_{r} gives a more smooth random field
- In practice, the expansion must be truncated after a finite number of terms s
- Higher s means better approximation, but also higher cost (eigenvalue problem + evaluation)
- Algorithms that take advantage of this property?

Governing equations

- Linear anisotropic steady-state stochastic heat equation on a domain $D \in \mathbb{R}^{d}$ with $d=2$ and boundary ∂D
- We wish to compute the temperature field
$T: D \times \Omega \rightarrow \mathbb{R}:(\boldsymbol{x}, \omega) \mapsto T(\boldsymbol{x}, \omega)$ that solves almost surely

$$
-\nabla \cdot[k(\boldsymbol{x}, \omega) \nabla T(\boldsymbol{x}, \omega)]=F(\boldsymbol{x}) \quad \text { for } \boldsymbol{x} \in D \text { and } \omega \in \Omega
$$

where the event ω belongs to a probability space (Ω, \mathcal{F}, P)

- For the KL expansion of a Gaussian field, we take $\Omega=\mathbb{R}^{s}$
- Given (deterministic) boundary conditions

$$
\begin{array}{rlr}
T(\boldsymbol{x}, \cdot)=T_{1}(\boldsymbol{x}) & \text { for } \boldsymbol{x} \in \partial_{1} D \\
n(\boldsymbol{x}) \cdot(k(\boldsymbol{x}, \cdot) \nabla T(\boldsymbol{x}, \cdot))=T_{2}(\boldsymbol{x}) & \text { for } \boldsymbol{x} \in \partial_{2} D
\end{array}
$$

Uncertainty propagation using Monte Carlo

- A sample set $\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{n}\right\}$ is drawn according to the input distributions f_{X}
- For each sample, the quantity of interest is evaluated

- The set of output quantities $\left\{\mathcal{M}\left(\boldsymbol{\xi}_{1}\right), \mathcal{M}\left(\boldsymbol{\xi}_{2}\right), \ldots, \mathcal{M}\left(\boldsymbol{\xi}_{n}\right)\right\}$ is then used for analysis, for example

$$
\mathbb{E}[g] \approx Q(g):=\frac{1}{n} \sum_{i=1}^{n} \mathcal{F}\left[\mathcal{M}\left(\xi_{i}\right)\right]
$$

Advantages/drawbacks of Monte Carlo

Advantages

- Universal: only requires samples from an input pdf and repeated model evaluations
- Convergence under mild conditions: law of large numbers and central limit theorem, requires L_{2} integrability
- Parallel: all samples are independent, hence suitable for high-perfomance computing

Drawbacks

- Statistical uncertainty: result is typically given with confidence interval: $Y=a \pm b$ with $c \%$ confidence
- Low efficiency: convergence rate is $\mathcal{O}(1 / \sqrt{N})$, where N is the number of realisations

Multilevel idea

- Implicitly assumed that model is discretized
- Multilevel idea: suppose we have multiple discrete approximations g_{ℓ} available with different accuracies, called levels $\ell=0,1,2, \ldots$
- Telescoping sum:

$$
\mathbb{E}\left[g_{L}\right]=\mathbb{E}\left[g_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[g_{\ell}-g_{\ell-1}\right]=\sum_{\ell=0}^{L} \mathbb{E}\left[\Delta g_{\ell}\right]
$$

- Huge cost reduction if

$$
\ell=0
$$

$\ell=1$

$\ell=2$

$$
\mathbb{V}\left[\Delta g_{\ell}\right] \rightarrow 0 \text { fast for } \ell \rightarrow \infty
$$

Multi-index idea

- Extension: assume that g is discretized to g_{ℓ}, where the components of $\ell=\left(\ell_{1}, \ldots, \ell_{m}\right)$ are different discretization dimensions
- Define difference operator in direction i

$$
\Delta_{i} g_{\ell}:=\left\{\begin{array}{ll}
g_{\ell}-g_{\ell-e_{i}} & \text { if } \ell_{i}>0, \\
g_{\ell} & \text { otherwise }
\end{array} \quad \text { for } i=1, \ldots, m\right.
$$

where \boldsymbol{e}_{i} is the i-th unit vector in \mathbb{R}^{m}

- Define multi-index difference Δ as tensor product

$$
\Delta:=\Delta_{1} \otimes \cdots \otimes \Delta_{m}
$$

where differences are taken with respect to all backward neighbours

A simple example

A simple example

- Example: suppose $m=2$ and $\ell=(1,2)$, then

Multi-Index Monte Carlo

- The MIMC estimator for $\mathbb{E}[g]$ can be formulated as

$$
\begin{aligned}
Q_{L}(g) & :=\sum_{\ell \in \mathcal{I}(L)} Q\left(\Delta g_{\ell}\right) \\
& =\sum_{\ell \in \mathcal{I}(L)} \frac{1}{N_{\ell}} \sum_{n=0}^{N_{\ell}-1}\left(\Delta_{1} \otimes \cdots \otimes \Delta_{m}\right) g_{\ell}\left(\omega_{\ell, n}\right)
\end{aligned}
$$

see [Haji-Ali, Nobile, Tempone, 2016]

- The downward closed set $\mathcal{I}(L)$ is called the index set
- Classical examples are

$R(\ell):=\left\{\overrightarrow{\boldsymbol{\tau}} \in \mathbb{N}^{m}: \overrightarrow{\boldsymbol{\tau}} \leq \boldsymbol{\ell}\right\}$
$T_{\boldsymbol{\delta}}(L):=\left\{\overrightarrow{\boldsymbol{\tau}} \in \mathbb{N}^{m}: \boldsymbol{\delta} \cdot \overrightarrow{\boldsymbol{\tau}} \leq L\right\}$

The optimal index set

- For a finite index set $\mathcal{I}(L)$ the error is given by

$$
e(\mathcal{I}(L))=\left|\sum_{\ell \notin \mathcal{I}(L)} \mathbb{E}\left[\Delta g_{\ell}\right]\right| \leq \sum_{\ell \notin \mathcal{I}(L)}\left|\mathbb{E}\left[\Delta g_{\ell}\right]\right|
$$

- Minimize $(\sqrt{ })$ total cost such that error is controlled

$$
\begin{array}{ll}
\min _{\mathcal{I}(L)} & \sum_{\ell \in \mathcal{I}(L)} N_{\ell} C_{\ell} \\
\text { s.t. } & e(\mathcal{I}(L)) \leq \mathrm{TOL}
\end{array}
$$

- Has no general solution unless other assumptions on the structure of the problem are made, see [Haji-Ali, Nobile, 2016]
- Alternative strategy: build up quasi-optimal index set adaptively using a greedy approach

Adaptive MIMC

- Formulation as a binary (or 0-1) knapsack problem by assigning profit indicator to each index

$$
\begin{aligned}
P_{\ell} & =\frac{\text { error contribution }}{\text { cost contribution }} \\
& =\frac{\left|\mathbb{E}\left[\Delta g_{\ell}\right]\right|}{\sqrt{\mathbb{V}\left[\Delta g_{\ell}\right] C_{\ell}}}
\end{aligned}
$$

- Objective: find downward closed index set such that total profit is as large as possible given maximum amount of work
- Use the active set algorithm used in dimension-adaptive quadrature using sparse grids [Gerstner, Griebel, 2003]

Results

- Back to the example heat exchanger

- Set up an adaptive MIMC simulation with $\ell=\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$
$\ell_{1} \quad$ spatial discretization
ℓ_{2} number of terms in KL expansion of conductor
ℓ_{3} number of terms in KL expansion of insulator
- Number of terms in KL expansion doubles between levels
- Further algorithm details
- index $(\cdot, 0,0)$ corresponds to an approximation using 16 terms for conductor material and 800 terms for insulator material
- start from index set $T_{(1,1,1)}(2)$ (simplex) to ensure robust estimates at coarser levels

Stacking bricks

L	error 1
10	8.4666

1 estimated root-mean-square error

Stacking bricks

L	error
10	8.4666
11	3.4669

Stacking bricks

L	error
10	8.4666
11	3.4669
12	3.2260

Stacking bricks

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326

Stacking bricks

Stacking bricks

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326
18	2.5712
21	2.0134

Stacking bricks

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326
18	2.5712
21	2.0134
24	1.6287

Stacking bricks

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326
18	2.5712
21	2.0134
24	1.6287
28	1.5057

Stacking bricks

Stacking bricks

Stacking bricks

Stacking bricks

Results

$\epsilon_{\text {rel }}$	non-adaptive MIMC			adaptive MIMC		
	mean	RMSE	time [s]	mean	RMSE	time [s]
0.160	136.09	8.4703	39.81	136.09	8.4703	40.72 -
0.080	136.09	8.4666	39.92	136.09	8.4666	40.98 -
0.040	135.82	3.8659	50.21	136.63	3.6797	45.51 V
0.030	135.03	3.6890	51.93	136.08	3.4669	48.43 V
0.024	136.38	2.2673	78.91	136.37	3.2660	51.81 V
0.020	136.38	2.2673	79.90	138.07	1.6287	56.29 V
0.016	136.92	1.9614	132.60	138.07	1.6287	78.94 V
0.012	136.90	1.6252	583.90	137.74	1.5057	107.26 V
0.010	137.91	1.4636	4076.46	137.93	1.3762	176.91 V
0.009	138.91	1.4436	4082.30	136.68	1.2319	242.63 V
0.008	-	-	-	138.18	0.9681	335.27 v
0.006	-	-	-	138.94	0.7543	1174.60 V

Extensions

What's next?

- Combination with faster sampling techniques (such as quasi-Monte Carlo)
- already illustrated for non-adaptive MIMC in
[R., Nuyens, Vandewalle, 2017]
- expect significant speed-up
- Combination of MIMC with fast solvers, such as multigrid (similar to [Kumar, Oosterlee, Dwight, 2017])

Closing thoughts

- UQ for industrial applications faces unique challenges: dealing with high-dimensional complex models
- Use of multiple levels decreases computational cost of classic Monte Carlo
- We illustrated dimension-adaptive MIMC for approximating the expected value of a quantity of interest that is a function of the solution of a PDE with random coefficients, see [R., Nuyens, Vandewalle, 2017]
- The method does not require a priori knowledge of the structure of the problem (impossible to obtain in an industrial setting)
- Error of the adaptive index set (for fixed cost) is smaller compared to other classical index sets

