Efficient multilevel and multi-index methods in Uncertainty Quantification

Pieterjan Robbe joint work with D. Nuyens and S. Vandewalle

WSC Spring Meeting

KU Leuven - University of Leuven Celestijnenlaan 200A B3001 Leuven Belgium ⊠ pieterjan.robbe@kuleuven.be

Contents

- 1. Uncertainty Quantification in engineering A short introduction
- 2. Motivational example Heat exchanger with random material
- 3. Multi-Index Monte Carlo Exploiting coarser grids for variance reduction
- 4. Adaptive strategies Building optimal index sets
- 5. Results

Stacking bricks

6. Conclusions and outlook Some closing thoughts

Computational models

• Computational model as black box

 If input parameters or model are subject to uncertainty ⇒ uncertainty quantification or UQ

Specific industrial challenges

What makes industrial UQ problems hard?

- Computational models are **complex**: nonlinearity, coupled problems (thermo-mechanics), plasticity, contact zones, ...
- Simulations are **costly**: a single run can take up to several hours or days, or more
- Number of inputs is typically 10-1000: high-dimensional problems (possibly even infinite-dimensional)
- UQ code comes on top of well defined simulation procedures

Engineers focus on a so-called quantity of interest $g = \mathcal{F}[\mathcal{M}(\boldsymbol{\xi})]$, such as maximum displacement, average stress, . . .

Typical engineering questions

Typical outcomes of the uncertainty propagation phase are:

• Statistics of the quantity of interest

• Distribution of the quantity of interest

• Failure probability of the quantity of interest

Motivational example

- Idealized model for a two-dimensional heat exchanger
- Conductor material k^{int} modelled with "smooth" variation
- Insulator material k^{int} modelled with "rough" variation
- Quantity of interest g is maximum temperature

Motivational example

• Some example visualisations of the material

• Example mesh and mean temperature field

Modeling spatial variation

• Represent the conductivity as a lognormal random field

$$k(\mathbf{x},\omega) = \exp(Z(\mathbf{x},\omega))$$

with $Z(\mathbf{x}, \omega)$ a Gaussian random field

- Every sample $\omega \in \Omega$ yields a realisation of the random field
- Classical technique to generate realisations of $k(\mathbf{x}, \omega)$ is the KL-expansion

$$k(\boldsymbol{x},\omega) = \exp\left(\mu(\boldsymbol{x}) + \sum_{r=1}^{\infty} \sqrt{\theta_r} f_r(\boldsymbol{x}) \xi_r(\omega)\right)$$

The KL expansion

• Approximation quality of the KL expansion determined by eigenvalue decay rate

The KL expansion

• Eigenvalues and eigenfunctions are solutions of the Fredholm equation

$$\int_D C(\boldsymbol{x}, \boldsymbol{y}) f_r(\boldsymbol{y}) \mathrm{d}\boldsymbol{y} = \theta_r f_r(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in D$$

where C(x, y) is the covariance function of the random field

- Faster decay of the eigenvalues θ_r gives a more smooth random field
- In practice, the expansion must be truncated after a finite number of terms *s*
- Higher *s* means better approximation, but also higher cost (eigenvalue problem + evaluation)
- Algorithms that take advantage of this property?

Governing equations

- Linear anisotropic steady-state stochastic heat equation on a domain D ∈ ℝ^d with d = 2 and boundary ∂D
- We wish to compute the temperature field $T: D \times \Omega \rightarrow \mathbb{R}: (\mathbf{x}, \omega) \mapsto T(\mathbf{x}, \omega)$ that solves almost surely

$$-\nabla \cdot \left[k(\boldsymbol{x}, \omega) \nabla T(\boldsymbol{x}, \omega) \right] = F(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in D \text{ and } \omega \in \Omega$$

where the event ω belongs to a probability space (Ω, \mathcal{F}, P)

- For the KL expansion of a Gaussian field, we take $\Omega = I\!R^s$
- Given (deterministic) boundary conditions

$$T(\mathbf{x}, \cdot) = T_1(\mathbf{x}) \qquad \text{for } \mathbf{x} \in \partial_1 D$$
$$n(\mathbf{x}) \cdot (k(\mathbf{x}, \cdot) \nabla T(\mathbf{x}, \cdot)) = T_2(\mathbf{x}) \qquad \text{for } \mathbf{x} \in \partial_2 D$$

Uncertainty propagation using Monte Carlo

- A sample set {ξ₁, ξ₂,..., ξ_n} is drawn according to the input distributions f_X
- For each sample, the quantity of interest is evaluated

 The set of output quantities {*M*(ξ₁), *M*(ξ₂), ..., *M*(ξ_n)} is then used for analysis, for example

$$\mathsf{IE}[g] \approx Q(g) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \mathcal{F}[\mathcal{M}(\xi_i)]$$

Advantages/drawbacks of Monte Carlo

Advantages

- Universal: only requires samples from an input pdf and repeated model evaluations
- **Convergence** under mild conditions: law of large numbers and central limit theorem, requires *L*₂ integrability
- Parallel: all samples are independent, hence suitable for high-perfomance computing

Drawbacks

- Statistical uncertainty: result is typically given with confidence interval: $Y = a \pm b$ with c% confidence
- Low efficiency: convergence rate is $O(1/\sqrt{N})$, where N is the number of realisations

Multilevel idea

- Implicitly assumed that model is discretized
- Multilevel idea: suppose we have multiple discrete approximations g_ℓ available with different accuracies, called levels ℓ = 0, 1, 2, ...
- Telescoping sum:

$$\mathsf{IE}[g_L] = \mathsf{IE}[g_0] + \sum_{\ell=1}^L \mathsf{IE}[g_\ell - g_{\ell-1}] = \sum_{\ell=0}^L \mathsf{IE}[\Delta g_\ell]$$

• Huge cost reduction if

$$\mathbb{V}[\Delta g_\ell] o 0$$
 fast for $\ell o \infty$

 $\ell = 0$

 $\ell=2$

Multi-index idea

- Extension: assume that g is discretized to g_{ℓ} , where the components of $\ell = (\ell_1, \ldots, \ell_m)$ are different discretization dimensions
- Define difference operator in direction i

$$\Delta_i g_{\boldsymbol{\ell}} \coloneqq \begin{cases} g_{\boldsymbol{\ell}} - g_{\boldsymbol{\ell} - \boldsymbol{e}_i} & \text{if } \ell_i > 0, \\ g_{\boldsymbol{\ell}} & \text{otherwise,} \end{cases} \quad \text{for } i = 1, \dots, m,$$

where \boldsymbol{e}_i is the *i*-th unit vector in \mathbb{R}^m

• Define multi-index difference Δ as tensor product

$$\Delta \coloneqq \Delta_1 \otimes \cdots \otimes \Delta_m,$$

where differences are taken with respect to all backward neighbours

A simple example

A simple example

Multi-Index Monte Carlo

• The MIMC estimator for $\mathbb{E}[g]$ can be formulated as

$$\begin{aligned} Q_L(g) &\coloneqq \sum_{\ell \in \mathcal{I}(L)} Q\left(\Delta g_\ell\right) \\ &= \sum_{\ell \in \mathcal{I}(L)} \frac{1}{N_\ell} \sum_{n=0}^{N_\ell - 1} \left(\Delta_1 \otimes \cdots \otimes \Delta_m\right) g_\ell(\omega_{\ell,n}) \end{aligned}$$

See [Haji-Ali, Nobile, Tempone, 2016]

- The downward closed set $\mathcal{I}(L)$ is called the index set
- Classical examples are

 $R(\ell) \coloneqq \{ ec{ au} \in \mathbb{N}^m : ec{ au} \leq \ell \}$

 $T_{\boldsymbol{\delta}}(L) \coloneqq \{ \vec{\boldsymbol{\tau}} \in \mathbb{N}^m : \boldsymbol{\delta} \cdot \vec{\boldsymbol{\tau}} \leq L \}$

The optimal index set

• For a finite index set $\mathcal{I}(L)$ the error is given by

$$e(\mathcal{I}(L)) = \left| \sum_{\ell \notin \mathcal{I}(L)} \mathsf{IE}[\Delta g_{\ell}] \right| \leq \sum_{\ell \notin \mathcal{I}(L)} |\mathsf{IE}[\Delta g_{\ell}]|$$

• Minimize ($\sqrt{}$) total cost such that error is controlled

$$\min_{\mathcal{I}(L)} \quad \sum_{\ell \in \mathcal{I}(L)} N_{\ell} C_{\ell}$$
s.t. $e(\mathcal{I}(L)) \leq \text{TOL}$

- Has no general solution unless other assumptions on the structure of the problem are made, see [Haji-Ali, Nobile, 2016]
- Alternative strategy: build up quasi-optimal index set adaptively using a greedy approach

Adaptive MIMC

• Formulation as a binary (or 0-1) knapsack problem by assigning profit indicator to each index

 $P_{\ell} = \frac{\text{error contribution}}{\text{cost contribution}}$ $= \frac{|\mathsf{IE}[\Delta g_{\ell}]|}{\sqrt{\mathsf{V}[\Delta g_{\ell}]C_{\ell}}}$

- Objective: find downward closed index set such that total profit is as large as possible given maximum amount of work
- Use the active set algorithm used in dimension-adaptive quadrature using sparse grids [Gerstner, Griebel, 2003]

Results

• Back to the example heat exchanger

- Set up an adaptive MIMC simulation with $\ell = (\ell_1, \ell_2, \ell_3)$
 - ℓ_1 spatial discretization
 - ℓ_2 number of terms in KL expansion of conductor
 - ℓ_3 number of terms in KL expansion of insulator
- Number of terms in KL expansion doubles between levels
- Further algorithm details
 - index $(\cdot, 0, 0)$ corresponds to an approximation using 16 terms for conductor material and 800 terms for insulator material
 - start from index set $T_{(1,1,1)}(2)$ (simplex) to ensure robust estimates at coarser levels

L error¹

10 8.4666

L	error			
10	8.4666			
11	3.4669			

-

L	error				
10	8.4666				
11	3.4669				
12	3.2260				

L	error
10	8.4666
11	3.4669
12	3.2260
15	2 8326

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326
18	2 5712

L	error
10	8.4666
11	3.4669
12	3.2260
15	2.8326
18	2.5712
21	2.0134

L	error		
10	8.4666		
11	3.4669		
12	3.2260		
15	2.8326		
18	2.5712		
21	2.0134		
24	1.6287		

L	error		
10	8.4666		
11	3.4669		
12	3.2260		
15	2.8326		
18	2.5712		
21	2.0134		
24	1.6287		
28	1.5057		

L	error			
10	8.4666			
11	3.4669			
12	3.2260			
15	2.8326			
18	2.5712			
21	2.0134			
24	1.6287			
28	1.5057			
36	1.3762			

Results

	non-adaptive MIMC		adaptive MIMC			
ϵ_{rel}	mean	RMSE	time [s]	mean	RMSE	time [s]
0.160	136.09	8.4703	39.81	136.09	8.4703	40.72 🔺
0.080	136.09	8.4666	39.92	136.09	8.4666	40.98 🔺
0.040	135.82	3.8659	50.21	136.63	3.6797	45.51 🔻
0.030	135.03	3.6890	51.93	136.08	3.4669	48.43 🔻
0.024	136.38	2.2673	78.91	136.37	3.2660	51.81 🔻
0.020	136.38	2.2673	79.90	138.07	1.6287	56.29 🔻
0.016	136.92	1.9614	132.60	138.07	1.6287	78.94 🔻
0.012	136.90	1.6252	583.90	137.74	1.5057	107.26 🔻
0.010	137.91	1.4636	4 076.46	137.93	1.3762	176.91 🔻
0.009	138.91	1.4436	4 082.30	136.68	1.2319	242.63 🔻
0.008	-	-	-	138.18	0.9681	335.27 🔻
0.006	-	-	-	138.94	0.7543	1 174.60 🔻

Extensions

What's next?

- Combination with faster sampling techniques (such as quasi-Monte Carlo)
 - already illustrated for non-adaptive MIMC in
 - [R., Nuyens, Vandewalle, 2017]
 - expect significant speed-up
- Combination of MIMC with fast solvers, such as multigrid (similar to [Kumar, Oosterlee, Dwight, 2017])

Closing thoughts

- UQ for industrial applications faces **unique challenges**: dealing with high-dimensional complex models
- Use of multiple levels decreases computational cost of classic Monte Carlo
- We illustrated dimension-adaptive MIMC for approximating the expected value of a quantity of interest that is a function of the solution of a PDE with random coefficients, see [R., Nuyens, Vandewalle, 2017]
- The method does not require a priori knowledge of the structure of the problem (impossible to obtain in an industrial setting)
- Error of the adaptive index set (for fixed cost) is smaller compared to other classical index sets