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Computational models

• Computational model as black box

computational model
M

input parameters
ξ ∈ Rs

model response
M(ξ) ∈ Rq

• geometrical
• material properties
• boundary conditions

• governing equations
• discretization
• solvers

• displacement
• stress
• temperature
• . . .

• If input parameters or model are subject to uncertainty
⇒ uncertainty quantification or UQ
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Specific industrial challenges

What makes industrial UQ problems hard?
• Computational models are complex: nonlinearity, coupled

problems (thermo-mechanics), plasticity, contact zones, . . .
• Simulations are costly: a single run can take up to several

hours or days, or more
• Number of inputs is typically 10-1000: high-dimensional

problems (possibly even infinite-dimensional)
• UQ code comes on top of well defined simulation procedures

Engineers focus on a so-called quantity of interest g = F [M(ξ)],
such as maximum displacement, average stress, . . .
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Typical engineering questions

Typical outcomes of the uncertainty propagation phase are:

• Statistics of the quantity of interest

µ

2σ

• Distribution of the quantity of interest

• Failure probability of the quantity of interest
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Motivational example

insulator
conductor

Te

Tc

constant flux Φh

2a

a

b

• Idealized model for a two-dimensional heat exchanger
• Conductor material k int modelled with “smooth” variation
• Insulator material k int modelled with “rough” variation

• Quantity of interest g is maximum temperature
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Motivational example

• Some example visualisations of the material

• Example mesh and mean temperature field
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Modeling spatial variation

• Represent the conductivity as a lognormal random field

k(x , ω) = exp(Z (x , ω))

with Z (x , ω) a Gaussian random field
• Every sample ω ∈ Ω yields a realisation of the random field
• Classical technique to generate realisations of k(x , ω) is the
KL-expansion

k(x , ω) = exp

(
µ(x) +

∞∑
r=1

√
θr fr (x)ξr (ω)

)

r = 1 r = 2 r = 4 r = 15 r = 88
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The KL expansion

• Approximation quality of the KL expansion determined by
eigenvalue decay rate
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The KL expansion

• Eigenvalues and eigenfunctions are solutions of the Fredholm
equation ∫

D
C (x , y)fr (y)dy = θr fr (y), x , y ∈ D

where C (x , y) is the covariance function of the random field
• Faster decay of the eigenvalues θr gives a more smooth

random field
• In practice, the expansion must be truncated after a finite
number of terms s
• Higher s means better approximation, but also higher cost

(eigenvalue problem + evaluation)
• Algorithms that take advantage of this property?
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Governing equations

• Linear anisotropic steady-state stochastic heat equation on
a domain D ∈ Rd with d = 2 and boundary ∂D
• We wish to compute the temperature field
T : D×Ω→ R : (x , ω) 7→ T (x , ω) that solves almost surely

−∇ ·
[
k(x , ω)∇T (x , ω)

]
= F (x) for x ∈ D and ω ∈ Ω

where the event ω belongs to a probability space (Ω,F ,P)

• For the KL expansion of a Gaussian field, we take Ω = Rs

• Given (deterministic) boundary conditions

T (x , ·) = T1(x) for x ∈ ∂1D
n(x) · (k(x , ·)∇T (x , ·)) = T2(x) for x ∈ ∂2D
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Uncertainty propagation using Monte Carlo

• A sample set {ξ1, ξ2, . . . , ξn} is drawn according to the input
distributions fX
• For each sample, the quantity of interest is evaluated

computational model
M

ξ2

ξ1

ξn

M(ξ2)

M(ξ1)

M(ξn)

...
...

• The set of output quantities {M(ξ1),M(ξ2), . . . ,M(ξn)} is
then used for analysis, for example

E[g ] ≈ Q(g) :=
1
n

n∑
i=1

F [M(ξi )]

10/23



Advantages/drawbacks of Monte Carlo

Advantages

• Universal: only requires samples from an input pdf and
repeated model evaluations
• Convergence under mild conditions: law of large numbers

and central limit theorem, requires L2 integrability
• Parallel: all samples are independent, hence suitable for

high-perfomance computing

Drawbacks

• Statistical uncertainty: result is typically given with
confidence interval: Y = a± b with c% confidence
• Low efficiency: convergence rate is O(1/

√
N), where N is

the number of realisations
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Multilevel idea

• Implicitly assumed that model is discretized

• Multilevel idea: suppose we have multiple
discrete approximations g` available with
different accuracies, called levels ` = 0, 1, 2, . . .
• Telescoping sum:

E[gL] = E[g0] +
L∑
`=1

E[g` − g`−1] =
L∑
`=0

E[∆g`]

• Huge cost reduction if

V[∆g`]→ 0 fast for `→∞

` = 0

` = 1

` = 2
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Multi-index idea

• Extension: assume that g is discretized to g`, where the
components of ` = (`1, . . . , `m) are different discretization
dimensions
• Define difference operator in direction i

∆ig` :=

{
g` − g`−e i

if `i > 0,
g` otherwise,

for i = 1, . . . ,m,

where e i is the i-th unit vector in Rm

• Define multi-index difference ∆ as tensor product

∆ := ∆1 ⊗ · · · ⊗∆m,

where differences are taken with respect to all backward
neighbours
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A simple example
`1 = 0 `1 = 1 `1 = 2

` 2
=

2
` 2

=
1

` 2
=

0
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A simple example

• Example: suppose m = 2 and ` = (1, 2), then

∆g(1,2) = ∆2
(
∆1g(1,2)

)
= ∆2

(
g(1,2) − g(0,2)

)
= ∆2g(1,2) −∆2g(0,2)

=
(
g(1,2) − g(1,1)

)
−
(
g(0,2) − g(0,1)

)
= g(1,2) − g(1,1) − g(0,2) + g(0,1)

`1 = 0 `1 = 1 `1 = 2

` 2
=

2
` 2

=
1

` 2
=

0

`1 = 0 `1 = 1 `1 = 2

` 2
=

2
` 2

=
1

` 2
=

0
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Multi-Index Monte Carlo

• The MIMC estimator for E[g ] can be formulated as

QL(g) :=
∑
`∈I(L)

Q (∆g`)

=
∑
`∈I(L)

1
N`

N`−1∑
n=0

(∆1 ⊗ · · · ⊗∆m) g`(ω`,n)

see [Haji-Ali, Nobile, Tempone, 2016]

• The downward closed set I(L) is called the index set
• Classical examples are

R(`) := {~τ ∈ Nm : ~τ ≤ `} Tδ(L) := {~τ ∈ Nm : δ · ~τ ≤ L}
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The optimal index set

• For a finite index set I(L) the error is given by

e(I(L)) =

∣∣∣∣∣∣
∑
`/∈I(L)

E[∆g`]

∣∣∣∣∣∣ ≤
∑
`/∈I(L)

|E[∆g`]|

• Minimize (√ ) total cost such that error is controlled

min
I(L)

∑
`∈I(L)

N`C`

s.t. e(I(L)) ≤ TOL

• Has no general solution unless other assumptions on the
structure of the problem are made, see [Haji-Ali, Nobile, 2016]

• Alternative strategy: build up quasi-optimal index set
adaptively using a greedy approach
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Adaptive MIMC

• Formulation as a binary (or 0-1) knapsack problem by
assigning profit indicator to each index

P` =
error contribution
cost contribution

=
|E[∆g`]|√
V[∆g`]C`

• Objective: find downward closed index set such that total
profit is as large as possible given maximum amount of work
• Use the active set algorithm used in dimension-adaptive

quadrature using sparse grids [Gerstner, Griebel, 2003]
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Results
• Back to the example heat exchanger

insulator
conductor

Te

Tc

constant flux Φh

2a

a

b

• Set up an adaptive MIMC simulation with ` = (`1, `2, `3)
`1 spatial discretization
`2 number of terms in KL expansion of conductor
`3 number of terms in KL expansion of insulator
• Number of terms in KL expansion doubles between levels

• Further algorithm details
– index (·, 0, 0) corresponds to an approximation using 16 terms for

conductor material and 800 terms for insulator material
– start from index set T(1,1,1)(2) (simplex) to ensure robust estimates at

coarser levels
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Stacking bricks

`3 `2

`1

L error1

10 8.4666
11 3.4669
12 3.2260
15 2.8326
10 2.5712
13 2.0134
16 1.6287
20 1.5057
28 1.3762
35 1.2319
40 0.9681
44 0.7543

1 estimated root-mean-square error 20/23



Stacking bricks

`3 `2

`1

L error

10 8.4666
11 3.4669
4 3.2260
7 2.8326

10 2.5712
13 2.0134
16 1.6287
20 1.5057
28 1.3762
35 1.2319
40 0.9681
44 0.7543
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Stacking bricks

`3 `2
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L error
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Stacking bricks

`3 `2

`1

L error

10 8.4666
11 3.4669
12 3.2260
15 2.8326
18 2.5712
21 2.0134
24 1.6287
28 1.5057
36 1.3762
43 1.2319
48 0.9681
44 0.7543
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Stacking bricks

`3 `2

`1

L error

10 8.4666
11 3.4669
12 3.2260
15 2.8326
18 2.5712
21 2.0134
24 1.6287
28 1.5057
36 1.3762
43 1.2319
48 0.9681
52 0.7543
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Results

εrel

0.160
0.080
0.040
0.030
0.024
0.020
0.016
0.012
0.010
0.009
0.008
0.006

non-adaptive MIMC
mean RMSE time [s]

136.09 8.4703 39.81
136.09 8.4666 39.92
135.82 3.8659 50.21
135.03 3.6890 51.93
136.38 2.2673 78.91
136.38 2.2673 79.90
136.92 1.9614 132.60
136.90 1.6252 583.90
137.91 1.4636 4 076.46
138.91 1.4436 4 082.30

- - -
- - -

adaptive MIMC
mean RMSE time [s]

136.09 8.4703 40.72
136.09 8.4666 40.98
136.63 3.6797 45.51
136.08 3.4669 48.43
136.37 3.2660 51.81
138.07 1.6287 56.29
138.07 1.6287 78.94
137.74 1.5057 107.26
137.93 1.3762 176.91
136.68 1.2319 242.63
138.18 0.9681 335.27
138.94 0.7543 1 174.60
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Extensions

What’s next?
• Combination with faster sampling techniques

(such as quasi-Monte Carlo)
– already illustrated for non-adaptive MIMC in

[R., Nuyens, Vandewalle, 2017]

– expect significant speed-up
• Combination of MIMC with fast solvers, such as multigrid

(similar to [Kumar, Oosterlee, Dwight, 2017])
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Closing thoughts

• UQ for industrial applications faces unique challenges:
dealing with high-dimensional complex models
• Use of multiple levels decreases computational cost of classic

Monte Carlo
• We illustrated dimension-adaptive MIMC for approximating

the expected value of a quantity of interest that is a function
of the solution of a PDE with random coefficients,
see [R., Nuyens, Vandewalle, 2017]

• The method does not require a priori knowledge of the
structure of the problem (impossible to obtain in an industrial
setting)
• Error of the adaptive index set (for fixed cost) is smaller

compared to other classical index sets
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